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Abstract: Designing an electrical machine is a 
complex process that involves many physics, 
objectives and constraints. Mechanical, thermal and 
energy performances are usually evaluated and 
optimized. In order to reach good NVH performance, 
the acoustic behavior of electrical powertrain has to 
be considered during the early design phase. Two 
excitations phenomena are to be considered: 
electromagnetic excitation within the airgap of the 
electric motor and meshing processes within the 
gearbox. The emitted noise is characterized by the 
emergence of high frequency pure tones that can be 
annoying and badly perceived by drivers. 

For these two sources, the paper will first briefly 
present efficient computation methods which can be 
used to estimate noise and vibration levels. For the 
electromagnetic excitation it relies on a numerical 
workflow which couples models belonging to the 
fields of electromagnetics for the Maxwell pressure 
computations, structural dynamics for the vibration 
response and acoustics for radiation estimation. For 
the gearbox excitation, it relies on the computations 
of excitations terms (Static Transmission Error and 
mesh stiffness fluctuation) and the spectral iterative 
solver to obtain the vibration response of the gearbox. 
Complete powertrain noise computations and 
examples of validations cases on industrial 
applications will be shown. 

In a second step, the paper will focus on robust 
optimization methods able to take into account 
several optimization objectives (sound power, 
vibration, torque ripple, operating conditions, etc.) and 
constraints (global efficiency, maximum torque, etc.). 
In addition to classical deterministic optimization 
method, robust optimization methods aim at 
considering the effect of manufacturing tolerances, 
material properties dispersion and control 
uncertainties on the vibratory and acoustic levels to 
minimize, so that noise reduction are really obtained 
when the machine is manufactured and operated. 
The interest of robust methods will be illustrated on 
industrial applications, for electric motor topology 
optimization as well as gearbox teeth microgeometry 
optimization. 

Keywords: Acoustics, Design Optimization, Electric 
Motors, Electromagnetics, Robustness, Gearbox, 
Transmission error, teeth correction. 

1. Introduction 

Will the advent of electric vehicles force acousticians 
working in the automotive sector to retire? Most 
people are convinced that an electric powertrain is 
necessarily quiet. This is absolutely not the case 
although it is true that the noise of an electric 
powertrain is very different from that of a typical ICE. 
Apart from noises of classical mechanical origin, the 
noise radiated by an electric powertrain is due to two 
specific sources: noise due to electromagnetic 
excitations (related to the electric motor) and gear 
noise (related to the gearbox directly associated to the 
electric motor to compose the ePowertrain). 

To estimate the NVH performance of an electric motor 
numerically, methods performing a weak coupling 
between electromagnetic and dynamic models are 
frequently applied to diverse motor technologies [1]-
[5]. These methods offer good accuracy when 
compared with measurements [6], and they enable for 
the estimation of the level of NVH indicators, such as 
sound power or dynamic forces generated by any 
design. Some minimization algorithms can be used in 
order to modify the electric motors design so as to 
minimize the radiated noise estimated using the 
multiphysical workflow, while ensuring, by means of 
optimization constraints, that overall 
electromechanical performance criteria, such as 
mean torque, torque ripple or efficiency, are not 
deteriorated. Using this method, significant noise 
level reductions can be achieved, owing to the high 
sensitivity of the electromagnetic excitation harmonic 
and spatial content to slight design modifications. 
Such optimization algorithms are used to reduce the 
noise of electric motors in [7] and [8]. To overcome 
the generally high number of cost function evaluations 
required by optimization algorithms, the authors of 
these articles use fast modelling workflows, i.e. 
respectively a fully analytical modelling workflow and 
a surrogate model. In the present paper, in the context 
of computing power increase, the use of a more 
accurate finite element electromagnetic model makes 
it possible to take full advantage of the noise reduction 
possibilities offered by slight geometric variations. 
However, the sensitivity of the electromagnetic 
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excitations can be so high that slight geometric 
deviations of the magnetic active parts within the 
manufacturing tolerances can lead to very high 
variations of the electromagnetic excitations spectral 
content and thus to the loss of the radiated noise 
reductions achieved by optimization. For such cases 
where deterministic optimization is not suited, a 
robust optimization method is presented. The 
probabilistic robust optimization methodology has 
been used for various applications in dynamics [9,10], 
but it is applied for the first time to the vibroacoustic 
optimization of electric motors. It ensures, when 
considering random deviation of the uncertain 
parameters, to converge towards a design with a low 
average noise level, and a low variability. After 
describing the simulation methodology, the 
deterministic and robust optimization methods are 
described and applied to minimize the torque ripple of 
an automotive traction motor. 

Geared systems are the seat of vibrations induced by 
the meshing process. For this reason, a gearbox is an 
important source of noise and vibration. The gearbox 
internal sources of excitation are various. The main 
source corresponds to fluctuation of the static 
transmission error (STE) of the gear which transmits 
the drive torque [11]. Static transmission error 
corresponds to the difference between the actual 
position of the driven gear and its theoretical one. 
Apart from the macroscopic parameters such as the 
size of the gears and their number of teeth, the 
literature and the tests show that the noise level 
radiated by a gearbox is strongly dependent on the 
teeth design, in particular on the microgeometry. 
Thus, it appears important to optimize the corrections 
made to the teeth. Insofar as the teeth corrections are 
of the same order of magnitude as the manufacturing 
tolerances, it is essential to consider the robustness 
of the designs. 

2. Simulation workflows 

2.1 Multiphysical simulation of electric motors noise 

The noise generation process for an electric motor is 
summarized on Fig.1.It can be divided into four steps: 

 The supply of the motor by PWM of the voltage 
leads to the appearance of high order harmonics 
in the currents. 

 These current harmonics, combined with the 
stator and rotor geometry and with the windings 
distributions, result in harmonic contributions in 
the airgap flux density, and as a consequence to 
dynamic contributions in the radial and tangential 
Maxwell pressures, which constitute the 
prevailing electromagnetic excitation in electric 
motors, as stated in [12].  

 The electromagnetic excitations apply to the 
stator and the rotor cause vibrations, with an 
amplitude depending on the modal basis and 
damping of the powertrain structure, and on the 
amplitude, frequency and spatial distribution of 
the electromagnetic excitations. 

 Depending on the operating deflection shapes 
and the vibration frequencies, the structure will 
prove to be more or less prone to radiating noise 
and to generate and to transmit dynamic forces to 
the receiving structure. 

 

Figure 1: Overview of the noise generation process 
in electric motors  

The numerical simulation of the noise generation 
process in electric motors requires the modelling of 
phenomena belonging to different fields of physics. 
An overview of a 3-steps multiphysical calculation 
scheme based on finite element models is given on 
Fig. 2. 

 

Figure 2: Basic principle of the multiphysical 
simulation methodology 

 

The motor is first modelled using the electromagnetic 
2D finite element method. At this stage, the two first 
steps of the noise generation process depicted on 
Fig. 1 are considered, since the supply conditions, the 
geometric design, the material properties and 
potential defects such as eccentricity are modelled. 
From this simulation, the radial and tangential flux 
densities are calculated along the air gap for different 
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positions of the rotor. In the examples of the present 
paper, the motors are fed with sinusoidal currents, but 
they can equally be fed with current having high order 
harmonics, following the method presented in [1]. 
Moreover, the eccentricities are neglected in this 
paper, but they can be simulated using an 
electromagnetic finite element model, as performed in 
[13]. The Maxwell pressures applying to the stator all 
along the airgap can then be calculated using 
 

σr =
1

2μ0

 (Br
2 − Bt

2), [1] 

and  

σt =
1

μ0

 (BrBt), [2] 

 
where σ is the surface force density, B is the magnetic 

flux density, μ
0
 is the magnetic permeability of 

vacuum, and r and t denote radial and tangential 
components. 

 

After converting the Maxwell pressure results from 

time domain excitations to frequency domain 

excitations, they are projected onto the structural 

mesh of the powertrain. This process is performed 

using a dedicated mapping tool, dealing with the 

electromagnetic and structural meshes of different 

sizes and converting the 2D excitations calculated 

using the electromagnetic simulation into 3D 

excitations. The principle of the coupling process is 

explained in [1]. The dynamic response of the 

structure is then calculated by modal frequency 

response. The modal basis of the powertrain structure 

is first extracted, and the dynamic response of each 

mode under the effect of electromagnetic excitations 

is calculated. The operating deflection shape is then 

obtained by summing the contribution of each mode. 

This simulation workflow based on a coupling 

between an electromagnetic and a structural model 

has been used and validated on many practical 

cases. An example of validation is given in [14]. Some 

guidelines on the modelling of laminated stators are 

given in [15]. 

 

The last step of the procedure is about the estimation 

of the NVH indicators. Three of them are commonly 

used in the automotive industry: 

 

 The vibration velocity or acceleration of the 
motor’s structure. 

 The noise radiated by the machine, caused by the 
interaction of the vibrating structure with the 
surrounding air (airborne noise). 

 The dynamic forces and torque generated by the 
motor which are responsible for the structure 
borne noise. 

2.2 Gear noise computation 

The method for STE calculation retained is classical 
[16, 17]. Equations describing contact between gears 
are solved for each meshing position, taking account 
of the elasto-static deformations and initial gaps 
between teeth surfaces. 

As detailed in [18], STE is considered as the 
excitation for the dynamic response computation and 
the noise radiation estimation. This is a rather 
complex simulation process, but it is not the point of 
this paper, so it is not detailed here. 

2.3 Towards design optimization 

Simulation workflows are not a goal, but they are the 
means to obtain a design that minimizes the noise 
radiated by the ePowertrain in operating conditions. 

These simulation workflows include all the 
ePowertrain design parameters that are considered 
relevant. They make it possible to calculate an 
estimate of the cost function (often the noise radiated 
by the machine), but also all the characteristic 
quantities of the operational conditions (values of 
torques, speed, efficiency, etc.). 

Optimization algorithms can therefore be 
implemented. The objective of these algorithms is to 
determine the design parameters which make it 
possible to reduce the cost function (noise or a 
quantity at the origin of the noise) as much as possible 
while respecting certain constraints, in particular so 
as not to reduce the performance of the ePowertrain. 

3. Optimization of an automotive ePowertrain 

3.1 Presentation of the ePowertrain 

The ePowertrain taken as example for this paper is an 
automotive ePowertrain. It is illustrated by Figure 3. 

 

Figure 3: Overview of the ePowertrain 
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This electric motor is a typical architecture for an 
automotive electric machine. It is an interior 
permanent magnets synchronous machine (PMSM) 
with 8 poles and 48 stator slots. Its rated power is 
160kW and the speed range is 0-12000rpm. The 
motor geometry is illustrated by Figure 4. 

 

Figure 4: 2D section of the studied motor 

The electric motor is associated to a 2-stage gearbox 
directly flanged on the end bell of the machine. This 
gearbox has helicoidal gears. 

3.2 Electric motor optimization 

3.2.1 Initial diagnosis 

The interest of analyzing and trying to minimize the 
vibroacoustic emissions of the considered PMSM was 
demonstrated by prior experimental investigations on 
the complete powertrain including the PMSM, the 
gearbox and the power electronics unit. They are not 
detailed in this article. They show that high noise 
levels are reached at low speeds. This is particularly 
critical because at low motor speeds, electromagnetic 
noise prevails over aerodynamic and rolling noise in 
electric vehicles. 

Therefore, to identify the causes of the noise 
emissions, the motor is simulated in the low-speed 
range from 500 rpm to 3000 rpm, using the simulation 
workflow detailed in paragraph 2.  

After projecting the excitations produced by each 
rotor part on a structural finite-element model, the 
phenomenon causing the high noise levels is 
identified: the noise and vibrations are due to a 
resonance of an overall powertrain bending mode 
caused by the torque ripple excitations around this 
mode’s natural frequency, i.e. around 1000 Hz. The 
shape of this overall bending mode is depicted in 
Fig.5. As any periodic function, the torque ripple 
created by the motor can be expressed in the 
frequency domain using Fourier series 
decomposition. Engine orders 24, 48 and 96 mainly 
contribute to torque ripple, and they cause the 
resonance of the overall bending mode at different 
engine speeds. 

 

Figure 5: Representation of the powertrain overall 
bending mode shape (1026 Hz) with unit maximum 

amplitude color scale. 

This resonance, involving an overall powertrain 
bending mode at 1000 Hz, results in airborne and 
structure borne noise. The airborne contribution is 
due to the acoustic radiation of the electric power unit 
and gearbox cover plates. The dynamic forces 
resulting from the amplified torque ripple excitation at 
the attachment points of the motor on the car body are 
responsible for the structure borne noise. 

3.2.2 Deterministic optimization 

In order to simplify the simulation process which must 
be performed for each cost function evaluation 
required by the optimization, the objective of the 
optimization is to directly minimize the torque ripple 
contributions related to engine orders 24, 48 and 96 
at the engine speeds at which they reach the 
frequency of 1000 Hz and provoke the resonance of 
the overall bending mode, i.e. at 2500 rpm for engine 
order 24, 1250 rpm for engine order 48 and 625 rpm 
for engine order 96. 

At the same time, attention must as always be paid to 
the mean torque of the motor so that it is not reduced 
during the optimization process. This is done by 
adding an inequality constraint guaranteeing that the 
mean torque of the optimized design, with no change 
of the supply currents, remains at the same level as 
the one of the initial design. 

The optimization algorithm that has been 
implemented is a Sequential Least Squares 
Programming algorithm (SLSQP). It is an iterative 
algorithm based on the estimation on the Jacobian 
matrix. It is compatible with constraints on the 
optimization parameters as well as on resulting 
quantities, which is fundamental in our case. 

As depicted in Fig. 6, the optimized design produces 
a much smoother torque. 
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Figure 6: Comparison of the instantaneous torque of 
the initial and optimized IPMSM at maximum power 

at 1000 rpm 

The torque ripple is significantly reduced for the 
optimized design, while the mean torque is 
unchanged. The amplitude reductions of torque 
engine orders 24, 48 and 96 can be expressed in 
decibels using  

𝑅𝐷𝐵 = 20 log10 (
𝑇ℎ𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝑇ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙

), (1) 

  

where 𝑅𝐷𝐵 is the reduction in dB, 𝑇ℎ𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
 is the 

amplitude of the ℎth torque engine order produced by 

the optimized design and 𝑇ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 is the amplitude of 

the ℎth torque engine order produced by the initial 
design. 

These torque ripple reductions are summarized in 
Table 1.  

Engine order 
and critical 

speed 

e.o. 24 
at 2500 

rpm 

e.o. 48 
at 1250 

rpm 

e.o. 96 
at 625 
rpm 

Reduction of 
the torque 
harmonics 
(simulation) 

9.1 dB 20.0 dB 11.2 dB 

Table 1: Reductions of the numerical torque 
amplitude levels in comparison with the initial design 

As the resonance of the overall bending mode due to 
torque ripple excitation is prevailing over the other 
phenomena between 500 and 3000 rpm, expressing 
the reductions achieved for each torque engine order 
in dB gives an accurate estimation of the SWL 
reductions to be expected. As a consequence, the 
SWL reductions achieved in this case should be close 
to the torque engine order level reduction values 
presented in Table 2. 

The effect of these modifications on the motor’s SWL 
is calculated using the complete simulation workflow 
described on Figure 2 and validates the reductions 
expected when considering torque harmonics. On this 

basis, a prototype has been built. The experimental 
results provide the reductions synthetized in Table 2. 
These reductions of the near field acoustic pressure 
overall level are even higher than those estimated by 
the simulations, and they validate the optimization 
method. 

Motor speed 
2500 
rpm 

1250 
rpm 

625 
rpm 

Reduction of the 
near field acoustic 

pressure (overall level) 
11 dB 18 dB 17 dB 

Table 2: Reductions of the measured overall 
acoustic levels in comparison with the initial design. 

In this case, the experimental results show that the 
optimized design is probably robust, although several 
prototypes should be built or a numerical sensitivity 
analysis should be conducted to quantify the 
variability of the optimization cost function when 
considering geometric deviation. 

However, several optimizations starting from different 
designs have been necessary to reach this optimized 
design. Many optimizations have converged towards 
designs achieving very high reductions of the torque 
engine order 48 level, which reveal to be non-robust 
minima. Performing robust optimization can ensure 
the convergence towards a robust minimum. 

3.2.3 Robust optimization 

The aim of robustness in the case of electric motor 
acoustics is to minimize the impact of uncertainty 
sources which cannot be eliminated, i.e. mainly 
geometry and material properties deviation, as well as 
control inaccuracies, on the vibratory and acoustic 
behavior of the motor. 

To evaluate the robustness of a given design using 
this probabilistic approach, the deterministic cost 
function is expressed in the following way: 

𝑓 = 𝑓(𝑥 + 𝛿), (2) 

where 𝑥 = (𝑥1, … , 𝑥𝑁)𝑇 is the set of design 
parameters, which are fixed for the given design, and 

𝛿 = (𝛿1, … , 𝛿𝑀)𝑇 is the set of uncertain parameters, 
which are considered as random parameters. 

A design of given parameters 𝑥, and for which all the 
𝑀 uncertain parameters 𝛿𝑖 = 0 are zero, is called 
nominal design. However, no manufactured design 
perfectly respects the nominal design because they 
are all subject to deviations modelled by the uncertain 
parameters 𝛿𝑖 ≠ 0. 

In this paper, the assumption is made that the 
uncertain parameters 𝛿𝑖 follow a normal distribution 

𝒩(0, 𝜎𝑖). Their expectation is set to zero, because 



 AAC 2021 – Multiobjective NVH e-powertrain optimisation 6 / 9 

 

systematic deviation can be considered by modifying 
the nominal design. Their standard deviations 𝜎𝑖 can 
be estimated from experimental data when 
measurements are available, or if not, by taking a 
value of the same order of magnitude as the 
tolerances, which are usually known. 

Some Monte-Carlo samplings are then generated, 
providing different sets of uncertain parameters 𝛿, 

and 𝑓(𝑥 + 𝛿) is computed for each sample. The mean 

value 𝜇𝑓 and the standard deviation 𝜎𝑓 of 𝑓 over all 

samples are the robustness indicators. 

The function to minimize to perform robust 
optimization is then: 

𝛼𝜇𝑓 + (1 − 𝛼)𝜎𝑓 , (3) 

where 𝛼 ∈ [0,1] is a scalar weighting factor defining 
the trade-off to pursue between mean value and 
standard deviation minimization. In the rest of the 
paper, this function is called robust cost function. 

The deterministic optimization of the 8-pole PMSM 
leads to the satisfactory results presented in Table 1 
and Table 2. However, many optimizations have been 
run and some of them have converged towards 
designs providing very large but also non robust 
reductions of the torque engine order 48 level. The 
robustness of one of these non-robust designs is 
evaluated, and the robust optimization methodology 
is then applied. 

The calculation of the output torque of this skewed 
PMSM is a relatively long process because of the size 
of the electromagnetic model and the necessity to 
model several sections of the motor to account for the 
skewing effect. This computation time limitation, as 
well as the fact that the torque engine order 48 is very 
significantly more variable than the other engine 
orders when uncertainties are considered, lead to the 
decision to focus on this engine order 48 at the engine 
speed of 1250 rpm for this example. 

To quantify the robustness of the deterministically 
optimized non-robust design, the mean value 𝜇𝑓 and 

standard deviation 𝜎𝑓 of its torque engine order 48 

level are calculated with the aid of a Monte-Carlo 
sampling with 200 samples. 

The results of the robustness analysis are presented 
in Table 3. While the nominal design achieves a 
reduction of 20 dB in comparison with the initial 
design, the 200 samples provide a mean reduction of 
7.6 dB. Moreover, the high standard deviation means 
that the torque engine order 48 level, and thus SWL, 
are very variable, and that while some manufactured 
motors are significantly less noisy than the initial 

design, a non-negligible amount of them are as noisy 
as the initial design or even louder. 

e.o. 48 level 
reduction of 

nominal design 
with respect to 
initial design 

e.o. 48 level 
mean reduction 
with respect to 
initial design 

e.o. 48 
level 

standard 
deviation 

20.0 dB 7.6 dB 7.0 dB 

Table 3: Results of the robustness analysis of the 
deterministic non-robust design. 

The robust optimization methodology presented in 
this paper can be useful to avoid such non-robust 
designs and to converge directly towards a robustly 
silent design. For this purpose, the robust cost 
function defined in equation (3) is minimized. The 
weighting factor 𝛼 is set to 0.5, which means that the 
same importance is given to the reduction of the mean 
value and the standard deviation of the torque engine 
order 48 level. Moreover, an inequality constraint 
imposing no mean torque reduction must be 
performed. As the mean torque of the motor is 
significantly less sensitive to uncertainties than their 
vibroacoustic behavior, the inequality constraint only 
guarantees that the nominal optimized design is not 
subject to any mean torque reduction when compared 
with the one of the initial design. 

The results of this optimization are depicted in Table 
5. The design resulting from this optimization provides 
a much larger mean reduction of the engine order 48 
level, with a much lower standard deviation. Both 
mean value and standard deviation are significantly 
reduced in comparison with those of the 
deterministically optimized design which is not robust. 
The improvement of the robustness is further 
illustrated by the distributions of the engine order 48 
levels reductions for each of the 200 randomly drawn 
samples of the deterministically and the robustly 
optimized designs, depicted respectively on Figures 7 
and 8. 

 e.o. 48 level mean 
reduction with 

respect to initial 
design 

e.o. 48 
level 

standard 
deviation 

Deterministically 
optimized non 
robust design 

7.6 dB 7.0 dB 

Robustly 
optimized 

design 
15.0 dB 2.14 dB 

Table 5: Comparison of the robustness analyses of 
the deterministically optimized non-robust design 

and the robustly optimized design 
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Figure 7: Distribution of the engine order 48 level 

reduction of the 200 random samples for the 
deterministically optimized design 

 

 
Figure 8: Distribution of the engine order 48 level 

reduction of the 200 random samples for the robustly 
optimized design 

These results show that probabilistic robust 
optimization can be applied to optimize electric 
motors when deterministic optimization converges 
towards non-robust designs. This method has been 
applied to minimize only the torque engine order 48 at 
1250 rpm, because it is the objective which is subject 
to the highest variability. The robust optimization 
method being time consuming, because computing 
the values of 𝜇𝑓 and 𝜎𝑓 , requires several evaluations 

of the deterministic cost function 𝑓, performing a 
robust multi-objective optimization aiming at 
minimizing the torque engine orders 24, 48 and 96 at 
their respective critical engine speeds of 2500 rpm, 
1250 rpm and 625 rpm would require a long 
computation time. An alternative could be to define a 
multi-objective optimization aiming at minimizing both 
mean value and standard deviation of the torque 
engine order 48 at 1250 rpm when uncertainties are 
considered, and at minimizing the torque engine 
orders 24 and 96, which are not subject to a high 
variability when uncertainties are considered, for the 
nominal design only. 

 

3.2 Gear design optimization 

3.2.1 Presentation 

The goal of the optimization is to find, for a given initial 
gear design (i.e. for a given macro geometry), the 
teeth correction that lead to a minimum sound power 
radiated by the gearbox integrated inside the 
ePowertrain in operating conditions. 

The value of these teeth corrections are about some 
micrometers: that is the same order of magnitude as 
the manufacturing tolerances. Then, it doesn’t make 
any sense to consider a deterministic design 
optimization: the teeth correction optimization must 
be robust, or not to be at all. 

Since the numerical constraints, in particular, 
computational time are very different from that of the 
electric motor, a different optimization algorithm has 
been chosen for gear design optimization: Particle 
Swarm Optimization (PSO). 

The method is based on a stigmergic behavior of a 
population, being in constant communication and 
exchanging information about their location in a given 
space to determine the best location according to 
what is being searched (minimizing the STE). In this 
case, some informant particles are considered, which 
are located in an initial and random position in a 
hyper-space built according to the different 
optimization parameters. The best location 
researched is thus the combination of parameters 
which ensures the minimum value of the cost function 
defined earlier. At each step and for each particle, a 
new speed and a new position is reevaluated 
considering the current particle velocity, its current 
position, its best position, the best position of 
neighbors. 

For complex cases where the computational time for 
one iteration is low (our case here), this is a very 
efficient algorithm to reach an optimum. In general, 
several possible sets of optimized teeth 
microgeometries are found by the algorithm, as 
shown in Figure 9. 
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Figure 9: Peak-to-peak value of the STE as a 
function on the torque. 

Before optimization: black curve. 
After optimization: colored curves (each color 

corresponds to a specific optimized teeth 
microgeometry) 

 

3.2.2 Robustness analysis 

The selection of the best one(s) is done by means of 
a robustness analysis considering the sensitivity of 
the solutions regarding uncertainties due to 
manufacturing tolerances. 

If a solution is determined by the PSO, the robustness 
can be evaluated by a Monte-Carlo method. Then, 
10000 others solutions are computed, chosen 
randomly in an hyperspace centered on the optimized 
solution parameters values, limited by the tolerances 
interval of each parameter and considering possible 
lead and involute alignment deviations. These 10000 
results allow the establishment of the density 
probability function of each selected optimized 
solution. They also allow us to compute statistical 
variables such as mean value and standard deviation. 

Figure 10 shows an example of probability density 
functions for different possible solutions. It illustrates 
how the optimized solution is selected. The solution 
S2 has a smaller mean value, but it is associated with 
a large dispersion. The solution S1 appears to be the 
best compromise between the mean value and the 
deterioration capability of the solution. 

 

Figure 10: Probability density functions for the 
standard solution and three selected optimized 

solutions 

 

Conclusion 

Electric powertrains that equip new electric vehicles 
are not so quiet and their design can become a 
headache for teams dedicated to NVH problems. 

The two main sources of noise and vibrations, specific 
to this type of equipment, are the electromagnetic 
excitations which apply to the structure of the electric 
motor and the transmission errors between the gears 
of the gearbox. 

For a complete and successful approach, these two 
sources must be the object of an optimization 
procedure. Since the phenomena are very different, 
they are handled through different simulation 
workflows. An optimization algorithm is chosen for 
each of them. Depending on the cases and the 
dynamic responses that occur under operating 
conditions, one or the other of these optimizations will 
lead to the most significant reductions, but it is 
important to implement the entire optimization 
process to obtain the best vibroacoustic performance 
from the initial design. 
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Glossary 

STE: Static Transmission Error 

e.o.: engine order. 

IPMSM: Interior Permanent Magnet Synchronous    

Motor. 

PWM: Pulse Width Modulation. 

PMSM: Permanent Magnet Synchronous Motor. 

SWL: Sound Power Level 

 


