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Abstract
The main source of excitation at the origin of the vibratory response of gear system is generated by the meshing

process, leading to the variation of the mesh stiffness and deviation between the ideal input/output transmission
law and the real one. In planetary gear, these phenomena are amplified due to the presence of multiple meshes.
Moreover, in operating, the varying relative position between the planets gears and the ring gear is at the origin of
a modulation in the temporal response measured on a fixed point on the ring gear housing. The aim of this work is
to present a novel method to investigate the dynamic behaviour of a planetary gear set. This method is a complete
procedure for a planetary gear system whining noise computation induced by the multi-mesh excitations. This pro-
cedure is divided in three main steps. First, the parametrical internal excitations are simultaneously characterized
by considering all contacts at the multiple gear meshings. Secondly, the coupled equations of motion are projected
onto the modal basis and the stationary dynamic response is computed using an iterative spectral method. Finally,
the modulated response of the planetary gear housing (ring gear) is evaluated. Numerical results are discussed and
compared with experimental observations.

1 Introduction
Over the wide range of geared systems, the planetary gear sets are distinguished by their capacity to provide

high gear ratio in a compact package. Indeed, a single stage planetary gear is composed of a central gear, called the
sun, which meshes with N gears called planets, which mesh with a peripheral gear (with internal teeth) called the
ring gear, while a carrier drives the axis of the planets. Thus, the sun, the ring gear and the carrier are three coaxial
solids. Planetary gear sets are used for example in automatic gearboxes, transmissions for hybrid vehicles, energy
production systems such as wind turbines, home automation applications such as shutters or blinds. However,
contrary to cylindrical gears with fixed and parallel axes, whining noise prediction and control remains a difficult
problem because of the coupling between the multiple gear meshes and the mobility of the planets axes.

It is well know that the gear whining noise is generated by the mesh process [1]. The problem posed is multi-
scale in nature. Indeed, the overall dynamic and vibroacoustic behaviour of geared systems (on the scale of a
meter) depends on the local micro-geometry of the teeth (on the scale of a micron), associated with the transmis-
sion error. Moreover, the problem is parametric in nature, due to the periodic fluctuation of the mesh stiffness,
and non-linear, due to the presence of functional clearance and close contacts between teeth and bearings. These
parametric internal excitations generate dynamic mesh forces which are transmitted to the housing through wheel
bodies, shafts and bearings. In the end, the radiated noise is directly related tot he vibratory state [2, 3, 4].
In the case of planetary gear sets, housing vibratory state prediction is challenging. In many applications, the
carrier rotation modulates the housing vibration response at its rotational frequency [5, 6], as a consequence of the
successive passage of the planets. The iterative spectral method allows the solving of linear parametric equations
of motion, in the carrier reference frame, in the spectral domain, with short computational time [7, 8]. The dynamic
response at meshes is hence fully characterized and the short computational time allows parametric investigation.
However, the computation of the dynamic response of any point on the ring gear requires an additional step. Even
if many works deal with ring gear modulated dynamic response [9] [10], further work is required to include modal
behaviour contribution of the ring gear. Indeed, these existing methods propose a simplified formulation based
on the use of Hanning window functions to simulate the growth/decay of the vibratory amplitude as one planet
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approaches or moves away from the measured point. Though these approach give good correlation with experi-
ments at low frequencies, the coincidence between mesh frequencies and housing modes at higher frequencies is
less discussed. Thus, a novel approach is proposed by taking into account the modulation effects induced by the
relative rotation between the observation point (fixed point located on the ring gear) and the meshes (attached to
the carrier reference frame). Numerical results are analysed and compared with experimental data.

Figure 1: Example of modulated housing vibratory response of a planetary gear with three planets, computed
using Hanning and Heaviside functions [9]

2 Numerical model
This paper proposes a novel approach to predict the vibroacoustic behaviour of planetary gear sets, from eval-

uation to the internal parametric excitations and their coupling to the housing vibratory state. The focus is set on
how to calculate the modulation effects due to the relative motion between the axis of the planets and the ring gear,
using a finite element approach and a spectral iterative method. This procedure can be divided into three main
steps. First, static transmission error and mesh stiffness fluctuation at each meshes are computing through the solv-
ing of contact equations. Next, the computation of the dynamic response of the drive train is performed through an
iterative spectral method. Finally, the dynamic response of the housing is computing through the relative rotation
between the observation point (fixed point located on the housing) and the meshes (attached to the carrier rotating
reference frame).

2.1 Static transmission error and mesh stiffnesses fluctuation
Assuming infinitely rigid and geometrically perfect gears, their circular involute profile offers a constant instan-

taneous transmission ratio. However, these undeformable and geometrical assumptions are never met. Geometrical
errors or tooth corrections as well as deformation under torque, induce a fluctuation of the instantaneous reduc-
tion ratio around its theoretical value. This fluctuation results in the so-called static transmission error (STE). It
is defined as the deviation between the actual position of the output shaft and its theoretical position [1, 2]. The
calculation of the STE is well mastered. It is based on the resolution of the equations describing the static contact
between the gear teeth (see for example Tavakoli et al. [11] and Rigaud et al. ([12]). For each position θ of the
driving gear, the contact between the teeth are established based on a kinematic analysis which assumes a geo-
metrically perfect and infinitely rigid mechanism, leading to the theoretical contact line on the tooth surfaces. The
resolution of the contact equations leads to the evaluation of STE δ(θ) and load distribution P along the contact
line.
In the case of planetary gears, equations of contact are solved taking account of all the meshes simultaneously
[13]. First, a planet gear is defined as reference. Contact points for the other gears are deduced for each successive
angular position of the reference gear, by taking into account planets mesh phasing condition [14], which depends
on the number of planets and the number of tooth of the sun gear.
With knowledge of contacts lines location between the sun and the planets, the contacts lines between ring and
planets occur is deduced from geometrical construction. For each angular position θ of the driving wheel, a kine-
matic analysis allows the resolution of contact equations of each meshes j = 1 : 2N :

{
HjPj = δj(θ)1− ej
Pj = Fj

(1)

At each contact, the constraints are:

{
−HjPj + δj(θ)1 ≤ ej
Pj ≥ Fj

(2)
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With Hj the compliance matrix of contact j, Pj the vector of the load distribution on the contact line j. δj is
the STE at mesh j, which correspond to a linear displacement of the gear related to the pinion along the line of
action. ej is the vector of the initial gaps between the contact surfaces determined from tooth modifications and
manufacturing errors, Fj is the static load oriented along the line of action, induced by the input torque, and 1 is a
unitary vector used for dimensional consideration.

In the case of a planetary gear train with N planets, the contact equations are solved by taking into account the
2N meshes simultaneously. For each planets, the overall STE ∆ is introduced from the sum of the local sun-planet
δn and planet-ring gear δn′ STE:

∆ = δn + δn′ (3)

Unlike cylindrical gears with fixed axes for which the static force transmitted by the teeth is an initial input
data of the problem, the distribution of the driving torque between the teeth of the planetary gear sets (and thus of
the force transmitted by each gear) is an unknown of the problem. This distribution depends on the flexibility of
the elements in contact, on the initial distances between the teeth induced by the microgeometrical gaps, and on
the phase conditions between the gears: in out of phase systems, the contact can be established between two pairs
of teeth for a gear (sun-planet or planet-ring), whereas it is established between a single pair of teeth for another
gear of the same nature. Thus, complementary constraint are added, acting that the total force is transmitted by the
sun to the three planets and from the three planets to the ring, and all the force received by a planet from the sun
are transmitted to the ring, so:

FT =
N∑

n=1

Fn =
2N∑

n′=N+1

F ′
n, Fn = F ′

n (4)

Furthermore, the instantaneous local mesh stiffness is defined from the derivative of the force transmitted by
the mesh, in relation to the static transmission error, for each angular position θs of the driving gear and for each
meshes:

kj(θs) =
∂Fj

∂δj
(θs) (5)

2.2 Dynamic response of the kinematic chain by a spectral iterative method
The numerical procedure proposed in this paper is based on several main assumptions. The ring gear is assumed

to be axisymmetric. Thus, the modal basis is independent of the angular position of the planets. As a result, one
modal basis is enough for solving equations at each angular position. Futhermore, the equations of motion are
first solved in a reference frame associated with the carrier, which is equivalent to considering that the ring gear is
moving in this reference frame. In practice, the modal basis is computed, considering the carrier fixed. Indeed, the
maximum relative speed of the ring gear to the carrier is about 12 m/s. This represents about 0.2% of the pressure
wave propagation speed of 5200 rpm. Except for very high speed applications, gyroscopic and centrifugal effects
can be neglected. This assumption is verified by the complex modal basis calculation (see equations detailed
Cooley and Parker [15]), here performed for a carrier rotational [0-120] rad/s speed range. The results obtained
show a negligible impact of gyroscopic effects. Less than 1% difference in eigenfrequencies is observed. Mode
shapes are almost identical.
The dynamic model chosen is based on a finite element discretisation of the transmission. The dynamic response
of the kinematic chain (i.e. dynamic transmission errors and teeth dynamic loads) can directly be computed in the
carrier reference frame. Thus, the equations of motion are expressed from the linearised gear force:

MEF ẍ+CEF ẋ+KEFx+
2N∑
j=1

kj(t)RjR
T
j x =

2N∑
j=1

kj(t)RjR
T
j xs(t) (6)
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With MEF and KEF respectively the mass and stiffness matrix from the finite element model and C the
damping matrix taken into account a posteriori with the modal decoupling hypothesis, through an equivalent vis-
cous damping coefficient for each mode. The elastic coupling between gears is introduced via the periodic mesh
stiffnesses kj(t), which results from the limited development of the first-order of tooth dynamic load. This cou-
pling, which acts along the lines of action, involves vectors of geometrical structure Rj . The vector xs corresponds
to the static response generated by the driving and brake torque, assumed constant. RT

j x is the dynamic transmis-
sion error and RT

j xs the static transmission error.

The finite element model of the planetary gear is presented in Figure 2. The housing (with ring gear directly
manufactured on), gears, input and output shafts and the carrier are modelled using 3D elements. The bearings are
modelled using axial and radial spring elements. Inertia are used to model the presence of a motor and a break.
These boundary inertia are connected to the input and output shafts with torsional stiffnesses, modelling the flex-
ible couplings on test bench. Mesh stiffnesses mean values are included in the finite elements model for elastic
coupling of the gears.

Figure 2: Finite elements model of the planetary gear

Time discretization methods lead to prohibitive calculation times. Low frequencies require long time period.
High frequencies require fine time sampling. Hence, parametric equations of motions are solved using the spectral
iterative method. The method is described in details in [7].It is based on the direct computation of the solutions
in the spectral domain [7]. To this end, the matrix equation ?? is rewritten in the mean modal basis with B,
deduced from the eigenvalues problem (KEF +

∑2N
j=1 kj(t)RjR

T
j ) − ω2MEF . By introducing the vector of

modal coordinates z such as x = B z, and thanks to the orthogonality property of the eigenmodes, equations in
the modal basis can be written under the following index form:

z̈k + 2ζkωkżk + ω2
kzk +

2N∑
j=1

gj(t)rjk

L∑
l=1

rjlzl =
2N∑
j=1

kj(t)rjkδ
(s)
j (t) (7)

In this equation, ζk is the equivalent viscous damping ratio of mode k, the term rjk = VT
k Rj is the projected

geometric structure vector in the modal basis and ωk is the kth eigenvalues of the system. One should note that
equations 7 remains coupled.

The first step of the iterative spectral method is based on solving the coupled equations of motion 7 in the
spectral domain, retaining only the stationary part of the forced response of the system. Indeed, the parametric
instabilities are characterised by an exponentially increasing free response. It is assumed that the viscous damping
is sufficient to lie outside these regions of parametric instabilities and that it leads to an exponentially decreasing
free response (asymptotic stability). Thus one can write:
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Zk(ω) +Hk(ω)
2N∑
j=1

Gj(ω)rjk ⊗
L∑

l=1

rjlZl(ω) = Hk(ω)
2N∑
j=1

Kj(ω)⊗ rjkE
(s)
j (ω) (8)

where Zk(ω), Gj(ω), Kj(ω) et E(s)
j (ω) are respectively the Fourier transform of zk(t), gj(t), kj(t) et δ(s)j (t).

The operator ⊗ represents the convolution product andHk(ω) represents the complex frequency response function
of the k mode, i.e.:

Hk(ω) =
1

(ω2
k − ω2 + 2iζkωkω)

(9)

After several judicious transformations, the iterative process can be written as follows:

En+1
i (ω) = Si(ω)−

2N∑
j=1

Tij(ω) ·
[
Gj ⊗ En

j

]
(ω) (10)

with:

E
(1)
i (ω) = Si(ω) (11)

The stopping criterion is based on the relative difference between two iterations which is compared to a very
small real ϵ, i.e. ϵ = 10−6 :

||En+1
i (ω)− En

i (ω)||
||En+1

i (ω)||
< ϵ (12)

With the spectral iterative method, large systems of periodic differential equations can be solved, with minimal
calculation times. Previous studies have demonstrated the validity of this method for multi-meshings systems [4],
like planetary gear sets [16, 8].

2.3 Vibroacoustic response of the planetary gear housing
The dynamic response computation with the spectral iterative method allows to describe the vibratory state of

any point of the finite element model. Even if this approach allows to directly compute the planetary gear chain
dynamic response, one more step is needed to compute the response of any point on the ring gear. The carrier
rotation modulates this response, as well as its rotational frequency [9]. The modulation is considered at posteriori,
by taking into account the effect induced by the relative rotation between the observation point (fixed point located
on the ring gear) and the meshes (attached to the carrier reference frame, as schematized in Figure 3.

The radial dynamic response of the cylindrical ring gear node n is noted ũn(R,ψn, z, t), with R the external
radius of the ring gear, z its axial position and t the time. The angular position of the observation point is noted
ψn and in the carrier reference frame (

−→
X c,

−→
Yc,

−→
Zc) and φn in the housing frame (

−→
X r,

−→
Y r,

−→
Z r). The dynamic

responses are computed by considering the system under load, without any relative movement between the ring
gear and the carrier. In practice, the dynamic response un(r, φn, z, t) of a fixed point on the ring gear (in relative
motion to the carrier) is measured.
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Figure 3: Model for the calculation of the dynamic response of a housing point

By properly choosing the initial position of the carrier at t = 0, one can write:

un(R,φ, z, t) = ũn(R,ψ, z, t) = ũn(R,φn − Ωct, z, t) (13)

Therefore, a point B(R,φB , zB) on the ring gear has a dynamic response out of phase from point A(R,φA <
φB , zA = zB) with a delay of:

tB − tA = −φB − φA

Ωc
(14)

With Ωc the carrier angular rotational speed. Based on this description, we proposed to access the dynamic
response un(R,φn, z, t), a linear temporal interpolation between the responses ũn(R,ψi, z, t) is build. This inter-
polation is based on the main assumptions previously described in this paper, and more particularly one on those
stating on the axisymmetric condition of the ring gear and the invariability of the modal basis whatever the posi-
tion of the planet axis. On the time interval ti ≤ t ≤ ti+1, the following linear time interpolation scheme can be
written:

un(R,φn, z, t) =
ũn(R,φn − Ωcti, z, t)(ti+1 − t) + ũn(R,φn − Ωcti+1, z, t)(t− ti)

(ti+1 − ti)
(15)

From a practical point a view, the iterative spectral method gives access to the answers in discrete nodes
of the ring gear ũi(R,ψ = ψi, z, t), i = 1 à P (54 points considered in our application). Thus, the answer
un(R,φn, z, t)) is evaluated at the node of the model identified by φk = 2kπ/P (k = 0, 1, ..., P −1). By properly
choose time interval and ring gear discretization, and by considering that all the nodes on a peripheral circle of the
ring gear have an identical response to within one phase, the dynamics response of the node identified by the angle
φk = 0 at time t is equal to:

un(R, 0, z, t) = Ωkc

P−1∑
i=0

[
ũi(R,

2π(P − i)

P
, z, t)(ti+1 − t) + ũi(R,

2π(P − 1− i)

P
, z, t)(t− ti)

]
× H(t− ti+1)H(ti − t)

(16)
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with H the Heaviside function.

3 Numerical results
The studied planetary gear set has the sun as its input and the carrier as the output, so that the ring gear remains

fixed. Its main characteristic are given in Table 1.

Table 1: Main characteristics of the studied planetary gear set

Sun Planets Ring
Number of planets N 3

Number of teeth Z 27 40 108
Module mo 1.5

Pressure angle α (°) 20
Helix angle β (°) 0

Transmission ratio ı 5

Based on the gear module, the maximum permissible input torque is 156 Nm, i.e. a breaking torque of
780 Nm. The nominal input operating speed of the planetary gear is 1500 rpm, with a maximum operating
speed of 3500 rpm. A test bench is instrumented to allow the vibratory and acoustical characterization of plan-
etary gear sets, such as instantaneous rotational speed of input and output gearbox shafts, the radial acceleration
of planetary gear housing and the radiated noise. This allows direct comparison with numerical results at each
computational step [17]. In this paper, the focus will be on the radial acceleration of planetary gear housing to
validated the capacity of the proposed method to access housing modulated vibratory response.
In this application, the applied motor torque is equal of 100 Nm and the excitation spectra (STE and mesh stiff-
nesses fluctuations) include the first six harmonics of the mesh frequency. The modal equivalent modal damping
rate is chosen to be uniform across all modes and is equal to 5%. Finally, the ring gear is supposed to be perfectly
cylindrical (and so perfectly axisymmetric). Indeed, the small variation of ring gear thickness observed on the real
system induced negligible deviation in modal basis and dynamic response.
Two test cases will be discussed. First, the dynamic response at low speed (250 rpm) is computed, when the
harmonics of the mesh frequency are lower than the eigenfrequencies of the system. Then, the dynamic response
at high speed (3100 rpm) is computed, when the harmonics of the mesh frequency may coincide with frequencies
for which the ring gear exhibits significant operational dynamic deformation. Hight speed measurement result are
finally discussed to evaluate the relevance of the proposal numerical model. For both results, special attention is
given to modulation shape of the radial acceleration of housing (ring gear) over a complete carrier rotational period
Tc.

3.1 Dynamic response of the ring gear at low speed
The dynamic response of the ring gear is evaluated for a sun rotation speed of 250 rpm. The mesh frequency is

then equal to fm = 90Hz. At low rotational speeds, the first harmonics of the mesh frequency are lower than the
natural frequencies of the system, thus the ring gear responds on its static deformation, i.e. the static contribution
of the modes. This static deformation is calculated by considering unitary forces directed along the lines of action,
as shown on Figure 4(a). This induced a deformation composed of six lobes, that can be express as a function
As describing the amplitude of the static deformation in polar coordinate, as shown in Figure 4(b).Figure 4(c,
d) show temporal response of the radial acceleration of the ring gear dynamic response for a complete carrier
rotation Tc, for purely harmonic excitation at the mesh frequency H108, and its associated spectrum, plotted as
a function of the output frequency order (carrier frequency) around the range of order from 100 to 116. If the
model was perfectly axisymmetric, one would observed a periodic temporal response with a period equal to Tc/3,
corresponding to the periodic passage of the three planets. In our application test case, ones can observed a slightly
different behaviour because the system isn’t perfectly axisymmetric. The spectrum has a moderate amplitude at the
mesh frequency fm. The dominant lines are the sidebands at fm±N , whereN is the number of planets. Ones also
observe that the envelope of the temporal response has six lobes, reflecting the amplitude modulation phenomena.
Detailed analysis of the time response envelope for this operating regime allows a link to be established between
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its amplitude and the static deformation of the ring gear. This result shows a different behaviour from those usually
found in the literature with simplified formulation, when the modulated signal is only considered as a growth/decay
of the vibratory amplitude as one planet approaches or moves away, which would lead for our application case to
a three-lobe signal [9].

(a) (b)

(c) (d)
Figure 4: (a) Static deformation of the ring gear induced by unitary force oriented along the line of action. (b)
Adimensionnal amplitude of the static deformation in polar coordinate. (c) Temporal response of the radial accel-
eration of the ring gear dynamic response for a complete carrier rotation. (d) Amplitude spectra in function of the
mesh frequency order.

3.2 Dynamic response of the ring gear at high speed
For high operating regimes, the higher order harmonics of the mesh frequency are high enough to coincide

with the eigenmodes of the system. The dynamic response of the ring gear is considered for a sun rotation speed
equal to 3100 rpm. The mesh frequency is then equal to 1116Hz.

Figure 5(a) shows the time evolution of the modulated dynamic response of the ring gear and figure 5(d) the
amplitude spectrum, plotted as a function of the carrier frequency order. An amplification of the fifth and sixth har-
monics of the mesh frequency is observed, corresponding to an excitation of the modes around 5580 and 6695Hz.
We propose to analyse the dynamic response extracted around these two harmonics. Figures 5(b, c) show the
corresponding temporal evolutions. Figures 5(e, f) show the amplitude spectra associated, plotted as a function of
the output frequency order (carrier frequency) around the order range from 532 to 548 on one hand, and from 640
to 656 on the other hand. As with the low-speed dynamic response, the amplitude of the harmonics of the mesh
frequency H540 and H648 are lower than that of the sidebands at H108i ± NH1 and H108i ± kH1, with N the
number of planets and k an integer. The shape of the envelope of the temporal dynamic responses is complex and
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depends on the frequency of observation, and so on the modes exited. Futhermore, the number of lobes seems to
be driven by the difference between the two most significant sidebands. For example, we observe six lobes for
the dynamic response around the fifth harmonic (driven by the sidebands H537and H543), while we observe four
lobes for the dynamic response around the sixth harmonic (driven by the sidebandsH645 andH649). Moreover, one
should observed that the periodic temporal response with a period equal to Tc/3 observed at low speed is no longer
representative of the modulated signal. Here again, numerical results show a behaviour far to be representative to
a three lobe temporal evolution of the ring gear radial acceleration.

In order to validate the relevance of the numerical results from the new method proposed in this paper, exper-
imental results for hight rotational speed are analysed. Here, the complexity lies in the quality of the tunning of
the numerical model compared to measurement. Indeed, a frequency shift of the modes, a poorly estimated modal
damping or geometrical simplifications of the numerical model make it difficult to choose the rotational speed
which would give us exactly the same operational deformation shape both in simulation and in measurement. In
the present paper, numerical rotational speed and measurement one are choose to give a qualitative comparison of
the phenomena that drive the modulated vibratory response of a planetary gearbox without trying an quantitative
comparison.

(a) (b) (c)

(d) (e) (f)
Figure 5: (a) Temporal evolution of the overall ring gear dynamic response. (b) Temporal evolution of the ring
gear dynamic response on the order range [532 548]. (c) Temporal evolution of the ring gear dynamic response on
the order range [640 656]. (d) Amplitude spectra of the overall ring gear dynamic response. (e) Amplitude spectra
of the ring gear dynamic response on the order range [532 548]. (f) Amplitude spectra of the ring gear dynamic
response on the order range [640 656].

The quasi-axisymmetric boundary conditions of the ring gear are experimentally well verified. Thus, the exper-
imental results presented below are the algebraic mean value of the levels measured by the different accelerometers.
The global level measured experimentally includes phenomena not considered in the numerical model (friction,
assembly errors, etc.). For the comparison between computation and measurement, the dynamic responses are
extracted around the first four harmonic of the mesh frequency, included sidebands induced by carrier rotation.
As an example, the experimental dynamic response measured at 800 and at 2200rpm is presented in Figure 6(a, b)
retaining only the frequency contributions on the order band H108i±NH1, (i=1, 2, . . . 6), N being the number of
planets. We observe a signal with a complex modulation, with a high number of sidebands at the mesh frequency.
Qualitatively, one observes 6 lobes at 800 and 2200rpm. The zero crossing of the dynamic response is only visible
when the dynamic response is plotted by only retaining an order band around a particular harmonic (see 6(c, d)). It
is also observed in this figure that the dynamic response at 800 rpm, retaining only the frequency contributions on
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the order band H216± 3H1, shows a number of lobes equal to 5, whereas at 2 200, by retaining only the frequency
contributions on the order band H432 ± 3H1, we observe 6 lobes. The experimental observations are qualitatively
consistent with what is observed numerically (see the digital application).

(a) (b)

(c) (d)
Figure 6: (a) Ring gear dynamic response measured at 800 rpm. (b) Ring gear dynamic response measured at
2200 rpm. (c) Ring gear dynamic response measured at 800 rpm, order 2 of the mesh frequency. (d) Ring gear
dynamic response measured at 2200 rpm, order 4 of the mesh frequency

The observation of number of lobes performed here illustrated than conventional simplified analytical for-
mulation to modulate the dynamic response of the ring gear failed to be representative of the complexity of this
phenomena. By integrating modal behaviour in the modulation numerical model, based on non-modulated initial
signal, one can reach a richer dynamic response, where an acoustic transcription of which would be closer to the
real sound of the planetary gearbox.

4 Conclusion
The modulated dynamic response of the ring gear of the planetary gear is evaluated using an original approach

which considers its operational deformation for each operating regime. Analysis of numerical and experimental
results is based one observation of the number of lobes over a complete carrier rotational period. If this analysis
don’t statued on the quantitative capability of the propose model, it shows how taking into account the modal
behaviour of the system during converting a non-modulated signal to a modulated one can reach a more complex
dynamic response, correlated to experimental observation.
The numerical results show that for low sun rotation speeds, the envelope of the dynamic response of the ring gear
is driven by the static deformation of the planetary gear. At higher rotational speeds, when the harmonics of the
mesh frequency are high enough to coincide with the eigenmodes of the system, the envelope of the modulated
dynamic response is driven by the operational deformation of the ring gear. Measurement investigations confirm
that the modulated dynamic response of the ring gear can presented more lobes than the number of planet.
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The used of the spectral iterative method offer low computational time and give the opportunity to extract the
dynamic response at several points to construct a refine modulated response. It also offer the opportunity to
performed parametrical simulation, key of a better understanding of ring gear modulation dynamic responses
effects and improving numerical model.
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